Kamis, 16 Mei 2013

Teknik Sampling : Probability/Random Sampling


Syarat pertama yang harus dilakukan untuk mengambil sampel secara acak adalah memperoleh atau membuat kerangka sampel atau dikenal dengan nama “sampling frame”. Yang dimaksud dengan kerangka sampling adalah daftar yang berisikan setiap elemen populasi yang bisa diambil sebagai sampel. Elemen populasi bisa berupa data tentang orang/binatang, tentang kejadian, tentang tempat, atau juga tentang benda. Jika populasi penelitian adalah mahasiswa perguruan tinggi “A”, maka peneliti harus bisa memiliki daftar semua mahasiswa yang terdaftar di perguruan tinggi “A “ tersebut selengkap mungkin. Nama, NRP, jenis kelamin, alamat, usia, dan informasi lain yang berguna bagi penelitiannya.. Dari daftar ini, peneliti akan bisa secara pasti mengetahui jumlah populasinya (N). Jika populasinya adalah rumah tangga dalam sebuah kota, maka peneliti harus mempunyai daftar seluruh rumah tangga kota tersebut. Jika populasinya adalah wilayah Jawa Barat, maka penelti harus mepunyai peta wilayah Jawa Barat secara lengkap. Kabupaten, Kecamatan, Desa, Kampung. Lalu setiap tempat tersebut diberi kode (angka atau simbol) yang berbeda satu sama lainnya.

Di samping sampling frame, peneliti juga harus mempunyai alat yang bisa dijadikan penentu sampel. Dari sekian elemen populasi, elemen mana saja yang bisa dipilih menjadi sampel?. Alat yang umumnya digunakan adalah Tabel Angka Random, kalkulator, atau undian. Pemilihan sampel secara acak bisa dilakukan melalui sistem undian jika elemen populasinya tidak begitu banyak. Tetapi jika sudah ratusan, cara undian bisa mengganggu konsep “acak” atau “random” itu sendiri.


Simple Random Sampling atau Sampel Acak Sederhana

Cara atau teknik ini dapat dilakukan jika analisis penelitiannya cenderung deskriptif dan bersifat umum. Perbedaan karakter yang mungkin ada pada setiap unsur atau elemen populasi tidak merupakan hal yang penting bagi rencana analisisnya. Misalnya, dalam populasi ada wanita dan pria, atau ada yang kaya dan yang miskin, ada manajer dan bukan manajer, dan perbedaan-perbedaan lainnya. Selama perbedaan gender, status kemakmuran, dan kedudukan dalam organisasi, serta perbedaan-perbedaan lain tersebut bukan merupakan sesuatu hal yang penting dan mempunyai pengaruh yang signifikan terhadap hasil penelitian, maka peneliti dapat mengambil sampel secara acak sederhana. Dengan demikian setiap unsur populasi harus mempunyai kesempatan sama untuk bisa dipilih menjadi sampel. Prosedurnya :
  1. Susun “sampling frame”
  2. Tetapkan jumlah sampel yang akan diambil
  3. Tentukan alat pemilihan sampel
  4. Pilih sampel sampai dengan jumlah terpenuhi


Stratified Random Sampling atau Sampel Acak Distratifikasikan

Karena unsur populasi berkarakteristik heterogen, dan heterogenitas tersebut mempunyai arti yang signifikan pada pencapaian tujuan penelitian, maka peneliti dapat mengambil sampel dengan cara ini. Misalnya, seorang peneliti ingin mengetahui sikap manajer terhadap satu kebijakan perusahaan. Dia menduga bahwa manajer tingkat atas cenderung positif sikapnya terhadap kebijakan perusahaan tadi. Agar dapat menguji dugaannya tersebut maka sampelnya harus terdiri atas paling tidak para manajer tingkat atas, menengah, dan bawah. Dengan teknik pemilihan sampel secara random distratifikasikan, maka dia akan memperoleh manajer di ketiga tingkatan tersebut, yaitu stratum manajer atas, manajer menengah dan manajer bawah. Dari setiap stratum tersebut dipilih sampel secara acak. Prosedurnya :
  1. Siapkan “sampling frame”
  2. Bagi sampling frame tersebut berdasarkan strata yang dikehendaki
  3. Tentukan jumlah sampel dalam setiap stratum
  4. Pilih sampel dari setiap stratum secara acak.

Pada saat menentukan jumlah sampel dalam setiap stratum, peneliti dapat menentukan secara (a) proposional, (b) tidak proposional. Yang dimaksud dengan proposional adalah jumlah sampel dalam setiap stratum sebanding dengan jumlah unsur populasi dalam stratum tersebut. Misalnya, untuk stratum manajer tingkat atas (I) terdapat 15 manajer, tingkat menengah ada 45 manajer (II), dan manajer tingkat bawah (III) ada 100 manajer. Artinya jumlah seluruh manajer adalah 160. Kalau jumlah sampel yang akan diambil seluruhnya 100 manajer, maka untuk stratum I diambil (15:160)x100 = 9 manajer, stratum II = 28 manajer, dan stratum 3 = 63 manajer.

Jumlah dalam setiap stratum tidak proposional. Hal ini terjadi jika jumlah unsur atau elemen di salah satu atau beberapa stratum sangat sedikit. Misalnya saja, kalau dalam stratum manajer kelas atas (I) hanya ada 4 manajer, maka peneliti bisa mengambil semua manajer dalam stratum tersebut , dan untuk manajer tingkat menengah (II) ditambah 5, sedangkan manajer tingat bawah (III), tetap 63 orang.


Cluster Sampling atau Sampel Gugus

Teknik ini biasa juga diterjemahkan dengan cara pengambilan sampel berdasarkan gugus. Berbeda dengan teknik pengambilan sampel acak yang distratifikasikan, di mana setiap unsur dalam satu stratum memiliki karakteristik yang homogen (stratum A : laki-laki semua, stratum B : perempuan semua), maka dalam sampel gugus, setiap gugus boleh mengandung unsur yang karakteristiknya berbeda-beda atau heterogen. Misalnya, dalam satu organisasi terdapat 100 departemen. Dalam setiap departemen terdapat banyak pegawai dengan karakteristik berbeda pula. Beda jenis kelaminnya, beda tingkat pendidikannya, beda tingkat pendapatnya, beda tingat manajerialnnya, dan perbedaan-perbedaan lainnya. Jika peneliti bermaksud mengetahui tingkat penerimaan para pegawai terhadap suatu strategi yang segera diterapkan perusahaan, maka peneliti dapat menggunakan cluster sampling untuk mencegah terpilihnya sampel hanya dari satu atau dua departemen saja. Prosedur :

  1. Susun sampling frame berdasarkan gugus – Dalam kasus di atas, elemennya ada 100 departemen.
  2. Tentukan berapa gugus yang akan diambil sebagai sampel
  3. Pilih gugus sebagai sampel dengan cara acak
  4. Teliti setiap pegawai yang ada dalam gugus sample
Systematic Sampling atau Sampel Sistematis


Jika peneliti dihadapkan pada ukuran populasi yang banyak dan tidak memiliki alat pengambil data secara random, cara pengambilan sampel sistematis dapat digunakan. Cara ini menuntut kepada peneliti untuk memilih unsur populasi secara sistematis, yaitu unsur populasi yang bisa dijadikan sampel adalah yang “keberapa”. Misalnya, setiap unsur populasi yang keenam, yang bisa dijadikan sampel. Soal “keberapa”-nya satu unsur populasi bisa dijadikan sampel tergantung pada ukuran populasi dan ukuran sampel. Misalnya, dalam satu populasi terdapat 5000 rumah. Sampel yang akan diambil adalah 250 rumah dengan demikian interval di antara sampel kesatu, kedua, dan seterusnya adalah 25. Prosedurnya :
  1. Susun sampling frame
  2. Tetapkan jumlah sampel yang ingin diambil
  3. Tentukan K (kelas interval)
  4. Tentukan angka atau nomor awal di antara kelas interval tersebut secara acak atau random – biasanya melalui cara undian saja.
  5. Mulailah mengambil sampel dimulai dari angka atau nomor awal yang terpilih.
  6. Pilihlah sebagai sampel angka atau nomor interval berikutnya

Area Sampling atau Sampel Wilayah

Teknik ini dipakai ketika peneliti dihadapkan pada situasi bahwa populasi penelitiannya tersebar di berbagai wilayah. Misalnya, seorang marketing manajer sebuah stasiun TV ingin mengetahui tingkat penerimaan masyarakat Jawa Barat atas sebuah mata tayangan, teknik pengambilan sampel dengan area sampling sangat tepat. Prosedurnya :

  1. Susun sampling frame yang menggambarkan peta wilayah (Jawa Barat) – Kabupaten, Kotamadya, Kecamatan, Desa.
  2. Tentukan wilayah yang akan dijadikan sampel (Kabupaten ?, Kotamadya?, Kecamatan?, Desa?)
  3. Tentukan berapa wilayah yang akan dijadikan sampel penelitiannya.
  4. Pilih beberapa wilayah untuk dijadikan sampel dengan cara acak atau random.
  5. Kalau ternyata masih terlampau banyak responden yang harus diambil datanya, bagi lagi wilayah yang terpilih ke dalam sub wilayah.


Tidak ada komentar:

Posting Komentar